
1 Appendix A: Link Matrices

Careful construction of the link matrices used in (2.7) is critical in the development of the GVAR. For
our purposes, and employing the country ordering presented in Table 1, the W i’s are given by:

W 0
10×177

=

(

R00 07×7 · · · 07×7 07×6 · · · 07×6 07×5

03×8 W 01 · · · W 0,20 W 0,21 · · · W 0,24 W 0,25

)

,

W i
12×177

=

(

Ri0 Ri1 Ri2 · · · Ri,25

W i0 W i1 W i2 · · · W i,25

)

, i = 1, ..., 25,

where

R00 =
[

07×1 I7

]

, Ri0 =

[

−wi0 01×7

06×1 06×7

]

, i = 1, ..., 25,

{Rij}20
j=1 =







[

−wij 01×6

06×1 06×6

]

if j 6= i

I7 if j = i







, i = 1, ..., 25,

{Rij}24
j=21 =







[

−wij 01×5

06×1 06×5

]

if j 6= i

I6 if j = i







, i = 1, ..., 25,

Ri,25 =







[

−wi,25 01×4

06×1 06×4

]

if i 6= 25

I5 if i = 25







,

{W 0j}20
j=1 =





w0j 0 0 0 0 0 0
0 0 0 0 0 w0j 0
0 0 0 0 0 0 w0j



 ,

{W 0j}24
j=21 =





w0j 0 0 0 0 0
0 0 0 0 w0j 0
0 0 0 0 0 w0j



 , W 0,25 =





w0,25 0 0 0 0
0 0 0 w0,25 0
0 0 0 0 w0,25



 ,

and for i = 1, ..., 25,

W i0 =













0 1 0 0 0 0 0 0
0 0 w∗

i0 0 0 0 0 0
0 0 0 0 0 w∗∗

i0 0 0
0 0 0 0 0 0 wi0 0
0 0 0 0 0 0 0 wi0













, {W ij}20
j=1 =













0 0 0 0 0 0 0
0 w∗

ij 0 0 0 0 0

0 0 0 0 w∗∗

ij 0 0

0 0 0 0 0 wij 0
0 0 0 0 0 0 wij













,

{W ij}24
j=21 =













0 0 0 0 0 0
0 w∗

ij 0 0 0 0

0 0 0 0 0 0
0 0 0 0 wij 0
0 0 0 0 0 wij













, W i,25 =













0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 wi,25 0
0 0 0 0 wi,25













.

where wij is the weight of country i in the trade of country j, w∗

ij is the ith country’s adjusted trade-weight
with the jth country after allowing for the lack of Saudi interest rate data, and w∗∗

ij is the ith country’s
trade-weight with the jth country adjusted to accommodate the lack of reliable stock market data for
China, Indonesia, Peru, Turkey and Saudi Arabia. Notice that

∑N
j=0 wij =

∑N
j=0 w∗

ij =
∑N

j=0 w∗∗

ij = 1,
and wii = w∗

ii = w∗

ii = 0 for all i.
We follow DdPS in our construction of the 26 × 26 trade-weighted link matrices based on trade

averages over the period 1999-2001. Initial experimentation with the model using more recent windows
including 2001-2003 yielded qualitatively similar results. We also considered the use of time-varying
trade weights, although as DdPS note, one must be careful not to introduce an undesirable element of
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randomness into estimation in this manner. In general, the results subject to the time-varying structure
were somewhat similar to those derived from the static link matrices and we could find no firm basis
on which to discriminate positively between them. Ultimately, our decision to use the same fixed trade-
weighting scheme as DdPS is motivated by a desire to maintain comparability with their results.

2 Appendix B: Derivations of PP, GIRF and GFEVD in the GVAR

Model

The reduced-form GVAR model in our paper is written as:

xt = g∗

0 + g1t + G1xt−1 + G2xt−2 + G3xt−3 + εt, (1)

Derivations of PP, GIRF and GFEVD are based on an infinite order MA representation of the GVAR
model, (1):

xt = dt +
∞
∑

j=0

Bjεt−j , (2)

where dt represents the (perfectly forecastable) deterministic component of xt and Bj can be evaluated
recursively as

Bj = G1Bj−1 + G2Bj−2 + G3Bj−3, j = 1, 2, with B0 = Im, Bj = 0 for j < 0.

2.1 Persistence Profiles

The cointegrating relationships are estimated and given in terms of the country–specific variables, β′

izit,
whereas the variables in the GVAR are given by xt. Hence, appropriate mapping between zit and xt is
necessary. Using (2.7) and (2.9) we have

zit = W ix̃t = W i (S0xt − S1xt−1)

= W i (S0dt − S1dt−1) + W iS0εt +
∞
∑

j=0

W i (S0Bj − S1Bj−1) εt−j .

Therefore, the PP of β′

jizit with respect to a system–wide shock to εt is given by

PP
(

β′

jizit; εt, n
)

=
β′

jiW iCnΣεC
′

nW ′

iβji

β′

jiW iC0ΣεC
′

0W
′

iβji

, n = 0, 1, 2, ... (3)

where βji is the jth cointegrating relationship in the ith country (j = 1, ..., ri), n is the forecasting
horizon, Σε is the covariance matrix of εt and

C0 = S0B0 = S0 and Cn = S0Bn − S1Bn−1, n = 1, 2, ...

Similarly, the PP of β′

jizit with respect to a variable–specific shock, say the ℓth element of xt, is given
by

PP
(

β′

jizit; εℓt, n
)

=
β′

jiW iCnΣεeℓ√
σℓℓ

, n = 0, 1, 2, ... (4)

where σℓℓ is the ℓth diagonal element of Σε and eℓ is an m× 1 vector with its ℓth in xt being unity and
zeros elsewhere.
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2.2 Impulse Responses

The generalised impulse response function (GIRF) of a unit (one standard error) shock to the ℓth element
of xt on the jth element of xt is given by

GIRF (xjt; uℓt, n) =
e′

jBnF−1
0 Σueℓ

√

e′

ℓΣueℓ

, n = 0, 1, 2, ..., j, ℓ = 1, ..., m. (5)

The above expression can be used to compute the effects of shocking (displacing) a given endogenous
variable in country i on all the variables in the global economy at different horizons.1 For a structurally
identified shock, vℓt, (such as a US monetary policy shock) the GIRF is given by

SGIRF (xjt; vℓt, n) =
e′

jBn (PF 0)
−1

Σveℓ
√

e′

ℓΣveℓ

, n = 0, 1, 2, ..., j, ℓ = 1, ..., m, (6)

where Σv is the covariance matrix of the structural shocks and PF 0 is defined by the identification
scheme used to identify the shocks. For example, for identification of a US monetary policy shock using
the triangular approach of Sims (1980), starting with the US model,

x0t = h∗

00 + h01t + Φ01x0,t−1 + Φ02x0,t−2 + Ψ00x
∗

0t + Ψ01x
∗

0,t−1 + Ψ02x
∗

0,t−2 + u0t, (7)

the structural shocks are identified by
v0t = P 0u0t,

where P 0 is a lower triangular matrix obtained as the m0 × m0 Choleski factor of Σu0 , such that
Σu0 = P 0P

′

0. Pre-multiplying the GVAR model (1) by

P =











P 0 0 0

0 Im1 0
. . .

0 0 ImN











,

it follows that (abstracting from deterministic elements)

PF 0xt = PF 1xt−1 + PF 2xt−2 + PF 3xt−3 + vt,

where

vt =









v0t

u1t

uNt









, Σv =











V (v0t) Cov (v0t, u1t) Cov (v0t, uNt)
Cov (u1t, v0t) V (u1t) Cov (u1t, uNt)

. . .

Cov (uNt, v0t) Cov (uNt, u1t) V (uNt)











.

By using the definition of GIRF with respect to the structural shocks, we have

SGIRF (xt; vℓt, n) = E
(

xt+n|Ωt−1, vℓt =
√

e′

ℓΣveℓ

)

− E (xt+n|Ωt−1) ,

then (6) readily follows (see also DdPS).

2.3 Forecast Error Variance Decomposition

The generalised FEVD of shocks to specific variables is then given by

GFEV D (xℓt; ujt, n) =
σ−1

u,jj

∑n
h=0

(

e′

ℓBhF−1
0 Σuej

)2

∑n
h=0 e′

ℓBhF−1
0 ΣuF−1′

0 B′

heℓ

, n = 0, 1, 2, ..., ℓ = 1, ..., m, (8)

1Note that the PP or GIRF of a unit shock to the US price level are the same as those of a shock to US inflation.
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which gives the proportion of the n–step ahead forecast error variance of the ℓth element of xt accounted
for by the innovation in the jth element of xt. Notice that, due to the non–diagonal form of Σu, the
elements of GFEV D (xℓt; ujt, n) need not sum to unity across j.

In the case of structurally identified shocks, we have

SGFEV D (xℓt; ujt, n) =
σ−1

u,jj

∑n
h=0

(

e′

ℓBh (PF 0)
−1

Σvej

)2

∑n
h=0 e′

ℓBh (PF 0)
−1

Σu (PF 0)
−1′ B′

heℓ

, n = 0, 1, 2, ..., ℓ = 1, ..., m, (9)

3 Appendix C: Central Forecasts and Probability Event Forecasts in

the GVAR Model

We will now describe in detail the estimation and construction of the probability event forecasts where
the underlying model is the following VAR(p) model in m global variables in xt:

xt =

p
∑

j=1

Gjxt−j + g∗

0 + g1t + εt, t = 1, 2, ..., T, (10)

where Gj , j = 1, . . . , p, are m×m matrices of coefficients, g∗

0 and g1 are m× 1 vectors of coefficients on
deterministics and εt is assumed to be iid with zero means, a positive semi–definite covariance matrix,
Σε, and serially uncorrelated.

3.1 Case 1: Absence of Parameter Uncertainty

Suppose that the consistent estimators of Gj , j = 1, . . . , p, g∗

0, g1 and Σε are given by Ĝj , j = 1, . . . , p,
ĝ∗

0, ĝ1 and Σ̂ε, respectively. Then, the estimates of the n–step ahead (central) forecasts of xT conditional
on the information set, ΩT , are obtained recursively by

x̂t+h =

p
∑

j=1

Ĝjxt+h−j + ĝ∗

0 + ĝ1 (t + h) , n = 1, 2, . . . , (11)

where the initial values, xt, xt−1, . . . ,xt−p+1, are given.

3.1.1 Analytic method

In this case we need to derive the n–step–ahead forecast innovations, denoted by ζT+n, and its covariance
matrix. To this end it is more convenient to work with the following canonical representation of (10):

Xt = GXt−1 + Dt + Et, t = 1, ..., T, T + 1, ..., T + n, (12)

where

Xt
mp×1

=











xt

xt−1
...

xt−p+1











, Dt
mp×1

=











g0 + g∗

1t
0
...
0











, Et
mp×1

=











εt

0
...
0











,

G
mp×mp

=













G1 G2 G3 · · · Gp−1 Gp

Im 0 0 · · · 0 0

0 Im 0 · · · 0 0
.
:

.
:

.
:

.
:

.
:

.
:

0 0 0 · · · Im 0













.
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Then, it is straightforward to show that

xT+n = JGnXT + D∗

T+n + ζT+n, n = 1, 2, . . . , (13)

where J
m×mp

= (Im,0, ...,0),

D∗

T+n =

n−1
∑

j=0

BjDT+n−j , ζT+n =

n−1
∑

j=0

BjεT+n−j , (14)

Bj = JGjJ ′, j = 1, 2, . . . , B0 = Im, Bj = 0, j < 0. (15)

Then it is easily seen that

V ar
(

ζT+n

)

=
n−1
∑

j=0

BjΣεB
′

j . (16)

Having obtained the estimates of xT+n and the covariance matrix, V ar
(

ζT+n

)

, the probability
forecast for event(s) can be readily evaluated via the analytic method, assuming that εt ∼ N(0,Σε).
Notice that the single event of interest can be written as

xj,T+n = τ ′

jxT+n < a,

where τ j is an m × 1 selection vector with unity on the j–th row and zeros elsewhere.2 Then, the

associated probability forecast (PF) is given by Pr
(

τ ′

jxT+n < a|ΩT ; M(θ)
)

,3 where θ simply denotes

the set of all parameters in the model. This PF can be evaluated analytically by the standard normal
cumulative distribution function,4

Φ





a − τ ′

jxT+n
√

τ ′

j
̂V ar
(

ζT+n

)

τ j



 , (17)

where ̂V ar
(

ζT+n

)

is the consistent estimator of the covariance matrix of the forecast innovations, ζT+n,
given by (16).

Now consider the case where the event of interest is that the n–quarter–ahead forecast of the quarterly
change in the jth variable in xT conditional on ΩT is less than a. In this case, the associated PF is given

by Pr
(

τ ′

j∆xT+n < a
)

, which can be evaluated analytically by

Φ





a − τ ′

j∆xT+n
√

τ ′

j
̂V ar
(

∆ζT+n

)

τ j



 , (18)

where ̂V ar
(

∆ζT+n

)

is the consistent estimator of

V ar
(

∆ζT+n

)

=
n−1
∑

j=0

B∗

jΣεB
∗
′

j , B∗

j = Bj − Bj−1, j = 0, 1, 2, . . . , (19)

In the case where we evaluate the probability forecast of the event that the n–quarter–ahead forecast
of the 4 quarter moving average growth rate of the jth variable in xT conditional on ΩT is less than a,
this can be expressed as

1

4

n
∑

i=n−3

∆xj,T+i =
1

4
τ ′

j (xT+n − xT+n−4) < a,

2For simplicity, but without loss of generality, we have chosen the simple selection vector, τ j . In principle, the analysis
is valid for any other selection vector (see the case of current account forecasts for an example).

3In what follows, we use the simplifying notation Pr
(

τ ′

jxT+h < a
)

.
4In fact, the probability of both single and joint events can be computed using the standard normal cdf . However, the

evaluation of the multiple integrals in the case of joint events is analytically complex where the number of events exceeds
about four.
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the associated PF, Pr
(

1
4τ ′

j (xT+n − xT+n−4) < a
)

, is evaluated analytically by

Φ





a − 1
4τ ′

j (xT+n − xT+n−4)

1
4

√

τ ′

j
̂V ar

(

1
4

∑n
i=n−3 ∆ζT+i

)

τ j



 , (20)

where

V ar

(

1

4

n
∑

i=n−3

∆ζT+i

)

=
1

16

n−1
∑

j=0

B∗∗

j ΣεB
∗∗

′

j , B∗∗

j = Bj − Bj−4, j = 0, 1, 2, . . . ,

Finally, consider the event that the n–quarter–ahead forecast of the n quarter average growth
rate of the jth variable in xT conditional on ΩT is less than a. Now the associated PF is given by

Pr
(

1
nτ ′

j (xT+n − xT ) < a
)

and evaluated analytically by

Φ





a − 1
nτ ′

j (xT+n − xT )

1
n

√

τ ′

j
̂V ar

(

1
n

∑n
i=1 ∆ζT+i

)

τ j



 , (21)

where

V ar

(

1

n

n
∑

i=1

∆ζT+i

)

=
1

n2

n−1
∑

j=0

B∗∗

j ΣεB
∗∗

′

j , B∗∗

j = Bj − Bj−n, j = 0, 1, 2, . . . ,

3.1.2 Stochastic Simulations

The probability of the single or joint events can be carried out using the standard normal cdfs as
described above. However, the evaluation of the multiple integrals for the case of the joint events is, in
general, analytically complex. Therefore, towards this end, we need to simulate the values of xT+n by

x
(s)
T+n =

p
∑

j=1

Ĝjx
(s)
T+n−j + ĝ∗

0 + ĝ1(t + n) + ε
(s)
T+n, n = 1, 2, . . . , s = 1, ..., S, (22)

where superscript ‘(s)’ refers to the sth replication, and x
(s)
T = xT , x

(s)
T−1 = xT−1, . . ., x

(s)
T−p+1 =

xT−p+1 for all s. The ε
(s)
T+n’s can be drawn by either the parametric or nonparametric methods; that is,

parametrically from a Normal distribution, N(0, Σ̂ε), or nonparametrically from the historic residuals,
{ε̂1, . . . , ε̂T }.

• Probability Forecasts of Single Events: The probability forecast of the single event, τ ′

jxT+n < a,
may be evaluated via stochastic simulations by

1

S

S
∑

s=1

I
(

a − τ ′

jx
(s)
T+n

)

, (23)

where I (w) is an indicator function which takes the value of unity if w > 0 and zero otherwise. Sim-
ilarly, the probability forecasts of other single events, τ ′

j∆xT+n < a, 1
4τ ′

j (xT+n − xT+n−4) < a or
1
nτ ′

j (xT+n − xT ) < a can be measured via stochastic simulations respectively by

1

S

S
∑

s=1

I
(

a − τ ′

j∆x
(s)
T+n

)

, (24)

1

S

S
∑

s=1

I

(

a − 1

4
τ ′

j

(

x
(s)
T+n − x

(s)
T+n−4

)

)

, (25)

1

S

S
∑

s=1

I

(

a − 1

n
τ ′

j

(

x
(s)
T+n − x

(s)
T

)

)

. (26)
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• Probability Forecasts of Joint Events: Suppose the joint event of interest, which consists of L single
events, can be defined by

ϕ (xT+1,h) < a, (27)

where ϕ (.) is the L × 1 vectors ϕ (.) = (ϕ1 (.) , ϕ2 (.) , ..., ϕL (.))′, ϕj (xT+1,h) is a scalar function of the
variables over the forecasting horizon T + 1, ..., T + h, a = (a1, a2, ..., aL)′ with aj being the “threshold”
value associated with ϕj (.), and ϕj (xT+1,h) < aj can be defined by any single event considered above.
Thus, the probability forecast of the joint event (27), Pr (ϕ (xT+1,h) < a), can be computed as

1

S

S
∑

s=1

I
(

a − ϕ
(

x
(s)
T+1, ...,x

(s)
T+h

))

, (28)

where I (w) is an indicator function with w = (w1, w2, ..., wL)′. I (w) takes the value of unity if wj > 0
∀j and zero otherwise.

3.2 Case 2: Presence of Parameter Uncertainty

In the presence of parameter uncertainty, it is advisable to focus on bootstrap techniques, since the
analytic methods are generally complicated even in the case of simple events. First, to allow for parameter
uncertainty, we use the bootstrapping technique to obtain R simulated within sample values of xt,

t = 1, ..., T , denoted by x
(r)
t ,

x
(r)
t =

p
∑

j=1

Ĝix
(r)
t−j + ĝ∗

0 + ĝ1t + ε
(r)
t , t = 1, 2, ..., T, r = 1, ..., R;

where the actual observations of initial values, x−1, . . . ,x−r are used. The ε
(r)
t ’s can also be drawn by

either the parametric or nonparametric method.

Having obtained the set of R simulated samples,
{

x
(r)
1 , . . . ,x

(r)
T

}

, the V AR(p) model (10) is re-

estimated R times to obtain new estimates, Ĝ
(r)
j , j = 1, . . . , s, ĝ

∗(r)
0 , ĝ

(r)
1 and Σ̂

(r)
ε , r = 1, .., R. On each

occasion, we undertake similar exercises to those described above to obtain measures of the probability
forecast, denoted simply by π(r), r = 1, ..., R.5 The empirical mean of the probability forecast is obtained
by

π̄ =
1

R

R
∑

r=1

π(r),

and the associated (100 − α)% lower and upper confidence bands computed as the Rαth smallest and
largest values of π(r), r = 1, .., R, respectively.6

3.3 Generating Simulated Errors

Either of two methods may be used in the simulation of the in–sample and future errors so that the
contemporaneous correlations that exist across the errors in the different equations of the GVAR model
are taken into account. The first is the parametric method where the errors are drawn from an assumed
probability distribution function. Alternatively, one could employ a non–parametric procedure based on
re–sampling techniques.

5In the case of stochastic simulation in conjunction with the bootstrapping technique, there is another possibility:

nonparametric draws from the pooled set of residuals,
{

ε
(r)
1 , . . . , ε

(r)
T

}R

r=1
.

6We can also obtain the empirical mean of the central forecast(s) by

x̄T+n =
1

R

R
∑

r=1

1

S

S
∑

i=1

x
(i,r)
T+n, n = 1, 2, ...,

and construct the associated 100α % lower and upper confidence bands as the RSα–th smallest and largest values of x
(i,r)
T+n,

i = 1, ..., S, r = 1, .., R, respectively.
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3.3.1 Parametric Approach

Under this approach, we assume that the errors are drawn from a multivariate distribution with zero

means and the covariance matrix, Σ̂ε

(

= T−1
∑T

t=1 εtε
′

t

)

. To obtain the simulated errors for m global

variables over H periods we first generate mH draws from an assumed iid distribution which we denote

v
(s)
T+h, h = 1, ..., H. These are then used to obtain

{

ε
(s)
T+n, n = 1, ..., H

}

computed as ε
(s)
T+n = K̂v

(s)
T+n for

s = 1, ..., S, where K̂ = P̂ Λ̂
1/2

, Λ̂ is a diagonal matrix with eigenvalues of Σ̂ε and P̂ is an orthogonal
matrix consisting of the corresponding eigenvectors. These matrices are obtained using the singular

value decomposition of Σ̂ε = P̂ Λ̂P̂
′

. Notice that the Choleski decomposition of Σ̂ε is not applicable
here since Σ̂ε is positive semi–definite due to the underlying common factor structure of the GVAR

model (see DHPS). In our applications, we generate, v
(s)
T+n, n = 1, ..., H, as IIN(0, Im), although other

parametric distributions such as multivariate Student t can also be used.

3.3.2 Non–Parametric Approaches

The most obvious non–parametric approach to generating the simulated errors, ε
(r)
T+n, is simply to take

n random draws with replacement from the in–sample residual vectors {ε̂1, . . . , ε̂T }. We refer to this
as ‘Method 1’. The simulated errors thus obtained clearly have the same distribution and covariance
structure as that observed in the original sample. However, this procedure is subject to the criticism
that it could introduce serial dependence at longer forecast horizons since the pseudo–random draws are
made from the same relatively small T vector of residuals.

An alternative non–parametric method for generating simulated errors (‘Method 2’), makes use of
the singular value decomposition of the estimated covariance employed in the parametric approach. For

a given choice of K̂ = P̂ Λ̂
1/2

, a set of mT transformed error terms {v̂1, . . . , v̂T } are computed such

that v̂t = K̂
−

ε̂t, t = 1, ..., T , where K̂
−

is the generalised inverse of K̂. The mT individual error
terms are mutually uncorrelated, but retain the distributional information (relating to extreme values
and so on) contained in the original observed errors. A set of mh simulated errors are then obtained by

drawing with replacement from these transformed residuals, denoted by
{

v
(s)
T+1, . . . ,v

(s)
T+H

}

. These, in

turn, are used to obtain
{

ε
(s)
T+1, . . . , ε

(s)
T+H

}

, recalling that ε
(r)
T+h = K̂v

(r)
T+h for s = 1, ..., S. Given that

the re–sampling occurs from the mT transformed error terms, Method 2 also has the advantage over
Method 1 that the serial dependence introduced through sampling with replacement is likely to be less
problematic.

3.3.3 Choice of Approach

The non–parametric approaches described above have the advantages that they make no distributional
assumptions on the error terms and are better able to capture the uncertainties arising from (possi-
bly rare) extreme observations. However, they suffer from the fact that they require random sampling
with replacement. Replacement is essential as otherwise the draws at longer forecast horizons are ef-
fectively truncated and unrepresentative. On the other hand, for a given sample size, it is clear that
re–sampling from the observed errors with replacement inevitably introduces serial dependence in the
simulated forecast errors at longer horizons as the same observed errors are drawn repeatedly. When
generating simulated errors over a forecast horizon, therefore, this provides an argument for the use of
non–parametric methods over shorter forecast horizons, but suggests that a greater reliance might be
placed on the parametric approach for the generation of probability forecasts at longer time horizons.
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4 Appendix D: Structural Break Test, Co-Breaking Test and Weak

Exogeneity Test in the GVAR Model

4.1 Test for Structural Breaks

We follow the recursive-residuals-based approach proposed by Brown, Durbin and Evans (1975) to test
for unknown structural breaks in the countries/regions of interest. Our test is based on the following
ARDL(1,1) specification as indicated in Section 3.2 (equation 3.12)

∆yit = αi + ρiyi,t−1 + θiei,t−1 + φix
∗

i,t−1 +

p−1
∑

j=1

̺ij∆yi,t−j +

p
∑

j=0

ϑij∆ei,t−j +

p
∑

j=0

ϕij∆x∗

i,t−j + ǫit (29)

Equation (29) can be re-written as
∆yit = β′wt + ǫit, (30)

where wt and β are the k × 1 vectors including all the regressors and all the coefficients of equation
(29), respectively.

Equation (30) is estimated recursively from k + 1 to T to obtain the recursive residuals computed as

rt =

(

∆yit − β′

t−1wt

)

(

√

1 + w′

t

(

W ′

t−1W t−1

)

−1
wt

) , t = k + 1, ..., T, (31)

where W ′

t−1 = [w1, w2, ...,wt], ∆Y ′

t−1 = [∆y1, ∆y2, ...,∆yt], and βt = (W ′

tW t)
−1

W ′

tY t. The CUSUM
test statistic is computed as

Rt =
T
∑

t=k+1

rt/s, (32)

where s is the standard error of regression fitted to all T sample points, calculated as

s =

√

√

√

√

1

T − k

T
∑

t=1

ǫ̂2t , ǫ̂t = ∆yit − β̂
′

wt, t = 1, ..., T, (33)

The (100 - α)% significance lines, upper line (UL) and lower line (LL), are found by connecting the
following points:

[

k , ±a (T − k)1/2
]

and
[

k , ±3 × a (T − k)1/2
]

(34)

where
α = 0.01, a = 1.143,

α = 0.05, a = 0.948,

α = 0.10, a = 0.850,

The Null hypothesis of no structural break is defined as:

Ho : LLt < Rt < ULt,

4.2 Test for Co-Breaking

The co-breaking test is based on country-specific equation (2.2) in the paper:

∆xit = ci0 + c∗i0∆dit + c∗i1∆di,t−1 + Λi∆x∗

it + Γi∆zi,t−1

+ αiβ
′

i (zi,t−1 − µidi,t−1 − γi (t − 1)) + uit. (35)

Under the Null hypothesis of no co-breaking, r over-identified zero restrictions are imposed on the
coefficients of the break dummies in βi in addition to the r2 exactly-identified restrictions (r denotes
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the number of cointegrating vectors). Thus, the co-breaking test is simply the test for the validity of r
over-identified zero restrictions imposed on βi. The log-likelihood ratio (LR) test statistic is computed
as

LR = −2 [ℓ (ϕ̂0) − ℓ (ϕ̂1)] ∼ χ2
r , (36)

where ϕ denotes the vector of all the parameters in (35), ϕ̂0 and ϕ̂1 are the ML estimators of ϕ obtained
under the null and alternative (respectively), and ℓ (ϕ̂0) and ℓ (ϕ̂1) are the corresponding maximised
values of the log-likelihood function.

4.3 Test for the Weak Exogeneity of Foreign Variables

In order to test the weak exogeneity of the country-specific foreign variables, we have recourse to the
distinction between the marginal VAR and conditional VEC models employed by GLPS. It follows that
we may write the VECMX∗ (p, p) generalisation of (35) for the ith country as follows:

(

Axx,i Axx∗,i

0 Ax∗x∗,i

)(

∆xit

∆x∗

it

)

= ci0 + c∗i0∆dit + c∗i1∆di,t−1 +

p−1
∑

j=1

Γij

(

∆xi,t−j

∆x∗

i,t−j

)

+ Πi









xi,t−1

x∗

i,t−1

µidi,t−1

γi (t − 1)









+

(

ǫx,it

ǫx∗,it

)

(37)

where:

Πi =









Πx,i

0

Πµ,i

Πγ,i









=









αx,i

0

αµ,i

αγ,i









β′

i

The zero restrictions in the matrices Ai and Πi jointly ensure that the foreign variables are I(1) forcing
for the system (c.f. Granger and Lin, 1995). Hence, the weak exogeneity of the variables in x∗

it may
be evaluated simply by testing the zero restrictions relating to the foreign variables in the adjustment
matrix, αx∗,i = 0. In particular, αx∗,i is the m∗ × r adjustment matrix of the marginal VAR model for
the m∗ foreign variables of the ith country. The test for the weak exogeneity of the jth foreign variable
in the ith country, x∗

j,it, is simply the test for the validity of the following joint restriction

α
(j,1)
x∗,i = α

(j,2)
x∗,i = ... = α

(j,r)
x∗,i = 0, (38)

where the superscript (j, s), (s = 1, 2, ..., r), (j = 1, 2, ..., m∗) refers to the position of the coefficient
α(j,s) within matrix αx∗,i. The F-test statistic is computed as

F =

(

∑T
1 ǫ̃j

x∗,itǫ̃
j
x∗,it −

∑T
1 ǫ̂j

x∗,itǫ̂
j
x∗,it

)

\r
∑T

1 ǫ̂
j

x∗,itǫ̂
j
x∗,it\(T − k)

∼ F (r , T − k) , (39)

where ǫ̃j
x∗,it and ǫ̂j

x∗,it are the residuals from the restricted and unrestricted models (respectively), r is
the number of restrictions and k the total number of regressors.
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